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Abstract

Large-scale datasets used for different tasks like classifi-
cation and object recognition are often found to have strong
correlation among various predicted attributes. When a
model is trained on a such dataset, it exhibits likewise corre-
lations. Despite this, the subject of many modern debiasing
methods generally focus on strengthening models to ignore
the inherent dataset biases between attributes, rather than
building a more robust training dataset. This work proposes
ALOUD, an Active Learning based method which aims to
build a robust unbiased dataset for training models which
are able to learn underrepresented groups in abundance in
the dataset. As a method of Active Learning, ALOUD re-
trieves data from an unlabeled pool and selectively adds
images to a seed dataset using Bias Sensitive Sampling,
an alternative to classical acquisition functions, to enforce
bias reduction. Experiments using ALOUD show compara-
ble results to state-of-the-art methods in terms of unbiased
model accuracy while operating on as little as 10.25% of
the training set.

1. Introduction
Deep neural networks (DNNs) and large-scale image

datasets have enabled great advances in computer vision
over the last decade. It is now well established that increas-
ing the size of training sets can significantly improve the
predictive ability of DNNs, [37]. This, however, does not
guarantee fairness in the distribution of the data, and mod-
ern datasets often contain many undesirable biases [31,38].
As a result models trained on them make unfair decisions,
where underrepresented groups are subject to predictive dis-
crimination. Bias mitigation can be performed at several
levels, as illustrated in Figure 1.

Most work has focused on avoiding model bias, i.e, train-
ing the model in a way that mitigates bias, as illustrated
in Figure 1(a). Many measures of bias have been pro-
posed [10, 15, 19–21] and algorithms designed to minimize
bias, usually by regularizing training through the inclusion
of these measures in loss functions [2, 20, 44, 45]. More re-
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Figure 1. Bias mitigation strategies. a) Model bias mitigation
techniques use loss functions to discourage bias at the mode

output. b) Existing dataset bias mitigation techniques subsample
the dataset to eliminate bias. Both of these approaches improve
bias at the cost of classification accuracy. c) Proposed approach

to jointly optimize the model and dataset, which enables bias
mitigation without sacrifice of dataset samples or classification

accuracy.

cently, it has been shown that improved performance can be
achieved with adversarial training [11, 28], by augmenting
the network with a bias classifier trained adversarially, in a
manner similar to GANs [14]. However, mitigating model
bias usually boils down to downplaying groups for which
there is a lot of training data (e.g. female kitchen scenes)
and promoting groups for which data is scarce (e.g. male
kitchen scenes). This hurts classifier generalization and de-
grades the overall recognition performance (poor recogni-
tion of kitchen scenes in general). Dataset bias has received
less algorithmic attention. Work in this area is usually con-
fined to exposing biases and recommending best practices
for data collection [30, 41] such as the use of “dataset au-
dit cards.” While important, these are far from sufficient to
guarantee that datasets are unbiased. There have also been
some proposals to reweigh or resample datasets [19, 22] so
as to eliminate or reduce the importance of images con-
ducive to bias, as illustrated in Figure 1(b). These, how-
ever, again reduce the effective dataset size and degrade
classification accuracy. In summary, algorithmic bias re-
duction procedures typically lead to degraded classifier per-
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formance.
The problem is that simply penalizing subsets of data,

either by dataset manipulation or loss-based constraints, al-
ways deteriorates generalization ability. In this work we ex-
plore the hypothesis that the solution to dataset induced bi-
ases is not to penalize the data that creates those biases, but
to augment the training set with more data that counterbal-
ances them. If the dataset is highly biased towards female
kitchen scenes, the only possibility to mitigate bias without
overfitting is to seek more examples of male kitchen scenes.
This, however, implies that dataset and model have to be
optimized jointly. We thus propose to jointly address the two
sources of bias within a unified bias mitigation architecture.
As illustrated in Figure 1(c), this architecture aims to train
fair semantic classifiers via an iterative optimization with
two components: 1) a dataset bias mitigation algorithm that
identifies and downweighs biased examples and seeks ad-
ditional examples in a large pool of data to counterbalance
the associated biases, and 2) a model training procedure.

The proposed dataset bias mitigation architecture is in-
spired by active learning procedures [18], which propose
examples to be labelled by a human oracle. Active learn-
ing algorithms vary in terms of the acquisition function
used to sample these examples from a large unlabelled
dataset. While many acquisition functions have been pro-
posed [4, 13, 43], the goal is usually to choose the samples
that most improve classifier performance with less labelling
effort. A classical solution to this problem is to choose the
samples of largest class uncertainty [3, 33]. This, however,
does not account for bias. In this work, we introduce a
novel Bias Sensitive Sampling (BSS) procedure that ad-
dresses this problem. Beyond increasing classification un-
certainty, BSS seeks examples that also decrease dataset
bias, as measured by the absolute posterior bias (APB) met-
ric, and produce label balanced datasets. These objectives
are combined into a dataset scoring function that relies on
pseudo-labels produced by the model to determine the unla-
belled samples to be added to the dataset, as it is expanded.
Two versions of this scoring function, based on hard vs. soft
pseudo-labels, are proposed and evaluated. Given the ex-
panded dataset, the model is retrained and the process iter-
ated.

Overall, the paper makes several contributions. First, we
point out the need for joint dataset and model bias miti-
gation, through procedures that iteratively optimize model
and dataset. Second, we propose an architecture to imple-
ment this goal, based on the novel BSS sampling procedure.
Third, we explore different implementations of the dataset
scoring function at the core of BSS, combining multiple ob-
jectives and different types of pseudo-labels. Finally, we
present experiments demonstrating the importance of the
different BSS components and showing that it outperforms
existing bias mitigation approaches.

2. Related Work
Prior works on bias mitigation in machine learning typ-

ically fall into two categories. Model debiasing meth-
ods compensate for bias during training of classifier, while
dataset debiasing focuses on eliminating the distributional
imbalance in the training samples. These methods are ex-
plored less than the ones in model debiasing, reflecting the
general trend that data quality is an underexplored but criti-
cal part of deep learning [29].

Model Bias. De-biasing the model is the process aiming
to learn the correct feature. [5] introduces a corrective loss
which can be added to any model to reduce the unwanted
bias in the dataset. Similarly, Group-DRO allows avoiding
bias overfitting by improving the worst-case performance
over pre-defined subgroups [34]. Other model de-biasing
methods such as model ensembles [8], and statistical regu-
larizations [6] focus on training a robust model to mitigate
the undesirable effect with the bias in the dataset.

Dataset Bias. The mismatched distribution between the
dataset and the reality is defined as dataset bias [40]. The
issue of the shift between distributions can be tackled by
Domain Adaptation (DA) techniques [12]. Resampling
is a common technique that oversamples minority and
undersamples majority to train a fairer model [7]. More
recently, REPAIR introduced a new resampling strategy to
decrease the representational bias and focus on solving the
dataset [23].

Active Learning. Our method resembles the Active
Learning loop to a great extent. Therefore, we provide a
brief review of relevant Active Learning literature.

Active Learning iteratively selects the most informative
samples to benefit the model and to reduce the human effort
in labeling the data. One classic approach to measure the
uncertainty of data is by using the posterior probabilities
of the predicted class [18] that is based on the entropy
of the class [36]. [43] proposes the learning loss module
that predicts the loss of unlabeled data points based on the
uncertainty method. More recently, ALOFT [1] selects
the subset of the dataset to mitigate the contextual bias in
the dataset explicitly and applies to object detection and
multi-label classification.

3. Iterative Dataset Collection
3.1. Overview

The methods for Model Debiasing and Dataset Debias-
ing are still relatively disjoint. The defining motivation of
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Figure 2. Absolute posterior bias(APB),
Average Subgroup Accuracy(ASA),

Dataset size (|Dk|) of the training dataset

our method is that there is a symbiotic relationship between
Model Debiasing and Dataset Debiasing: performing AL on
a debiased model will allow one to select critical images for
labeling, which in turn, will create an even more debiased
model, etc.

The abstract loop underlying our method is extremely
simple as illustrated in Figure 1, and closely resembles an
active learning loop. We take this section to introduce and
formalize each of the components.

3.2. Problem Formulation

We consider a classifier of images X that predicts both a
binary class label, Y ∈ {0, 1}, and K binary attributes Z =
(Z1, . . . , ZK), where Zk ∈ {0, 1}. These predictions are
produced by functions y = f(x), zi = hi(x), implemented
by a neural network with K +1 sigmoidal outputs. Given a
dataset D = {(xi, yi, zi)}ni=1, where yi is the class label of
example xi and zi the associated vector of attribute values,
the network is trained to minimize the risk

R(f,h,D) =
∑
i

{
L[f(xi),yi] + λ

∑
k

L[hk(xi), zi,k]

}
(1)

defined by the binary cross-entropy loss function
L[f((x)), y] = y log f(x) + (1− y) log(1− f(x)).

In practice, datasets are often collected with bias,
where certain groups of the population are over- or under-
represented compared to the ground-truth distribution. We
consider the setting where groups g are defined by the bi-
nary label y and a binary protected attribute s, i.e. g =
(y, s) ∈ G = {(0, 0), (0, 1), (1, 0), (1, 1)}. However, all al-
gorithms can be generalized to settings containing multiple
target and protected attributes. In what follows, we denote
the protected attribute by random variable S, even though

it is usually one of the attributes Zi introduced above . We
use either notation as convenient, e.g. do not rewrite (1) to
explicitly denote the dependence on S.

3.3. ALOUD

ALOUD aims to assemble an unbiased dataset D of size
N , from a larger unlabeled dataset U = {u1, . . . ,uW },
where W ≫ N . This is formulated as the search for the
dataset which, when used to train f , achieves the maximum
unbiased accuracy on a previously designated hold-out set.

Specifically, let (Xtrain,Xval,Xtest) be a dataset, D0 ⊂
Xtrain be an initial seed dataset, and Lu be a measure of
dataset bias. On each round k, ALOUD seeks to find a
dataset Dk such that:

Dk = argmax
D⊂U\Dk−1

Lu(D; fθ̂k) (2)

where θ̂k = argmin
θ
R(fθ;Dk−1) (3)

where (3), withR as described by (1), is standard empirical
risk minimization (ERM) with binary cross-entropy loss.
Finally, given some notion of model biasMu, one obtains
a final unbiased dataset D, an unbiased classifier f , and a
final unbiased classification accuracy δ from:

D = DM , f = fθ̂M , δ =Mu(fθ̂M ;Xtest) (4)

where M = argmax
k=1,2,...

Mu(fθ̂k ;Xval) (5)

Algorithm 1: Dataset Collection with ALOUD
Input: N : max iterations, U : unlabeled data pool;
D0: seed dataset, B:Annotation budget

for k = 1, ..., N do
Train model fk on Dk−1, using (3);
Create pseudo-labeled dataset P from U ,

using (6);
Cb ← BSS1(Dk−1,P, B, LCB);
Dc ← h(Cb);
Dk ← BSS2(Dk−1,Dc,∞, LB)

end
return Dn, fn

The steps of (2) and (3) are performed in an alternating
fashion, resulting in a process that iterates between updat-
ing the dataset D and model parameters θ, starting from the
seed datasetD0. These operations are summarized by Algo-
rithm 1. At iteration k, the algorithm starts by training the
model (fk,hk) on the current dataset Dk−1, using (3). It
then uses this model to produce class and attribute pseudo-
labels:

ŷi = 1(fk(xi) ≥ 0.5), (6)
ẑi,k = 1(hi,k(xi) ≥ 0.5), k ∈ {1, . . . ,K} (7)
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for each unlabeled example xi ∈ U , creating a pseudo-
labeled dataset P = {(xi, ŷi, ẑi)}Mi=1, which is used to seek
the best samples to augment Dk. This is performed with a
bias sensitive sampling (BSS) procedure, which takes inDk

, P , and an annotation budget B, and samples a candidate
set Cb ⊂ P of size B according to a dataset scoring function
LCB . Samples in Cb are then labeled by the human oracle
h to form a candidate dataset Dc, which is finally subject to
the BSS procedure again to eliminate samples that do not
contribute to a lower dataset score under a scoring function
LB .

Algorithm 2: Bias Sensitive Sampling (BSS)
Input: D: existing dataset; C: candidate dataset;
B: Annotation budget; L: dataset scorer;
bcurrent ← L(D);
for d ∈ U\Dk do

bnew ← L(Dk−1 ∪ d) ;
if bnew < bcurrent then
Dk ← Dk−1 ∪ d
bcurrent ← bnew

end
if |Dk| ≥ B then

break
end

end
return Dk

The BSS procedure is implemented by Algorithm 2. It
samples a subset of size B from a set C of candidate exam-
ples that, when added to an existing dataset D reduce the
risk of the latter, according to the scoring function L. The
procedure is used twice per iteration of ALOUD. In the first
time (BSS1), the goal is to identify samples Cb in P that are
promising for labeling. To meet a labeling budget, Cb is lim-
ited to size B. Unlike existing AL methods, we employ the
process a second time (BSS2) after the samples are anno-
tated. This is necessary because the pseudo-labels of P can
be incorrect, leading to new samples that increase the bias.
By applying the BSS procedure again to the human anno-
tated dataset Dc, ALOUD eliminates those samples that no
longer contribute to a low dataset bias after the label correc-
tion.

A final, subtle, difference between the two uses of BSS
is the dataset scoring function employed. In the first use
of BSS, where the goal is to identify good labels to sam-
ple, this function considers a combination of classification
accuracy and dataset bias. This is because good examples
to add to the dataset should be both challenging to classify,
so as increase classification accuracy, and bias mitigating,
to guarantee a dataset without bias. However, after label-
ing, there is no classification benefit in eliminating samples.

Hence, the second use of BSS uses a scoring function that
only considers bias. We next discuss the dataset scoring
functions in more detail.

4. Dataset Bias Mitigation
In this section, we discuss the scoring functions L used

in the BSS procedure.

4.1. Absolute Posterior Bias

A target prediction y is unbiased with respect to a pro-
tected attribute s if the predicted value of the protected at-
tribute has no bearing on the prediction of the target at-
tribute. This is captured by the Absolute Posterior Bias
(APB) metric

µBias(Y, S) = |PY |S(y | 1)− PY |S(y | 0)|, (8)

whose minimization forces independence of the target
and bias predictions. This follows from the fact that
µBias(Y, S) ≥ 0 with equality if and only if

PY |S(y | 1) = PY |S(y | 0) (9)

from which it follows that

PY (y) = PY |S(y | 1)PS(1) + PY |S(y | 0)PS(0)(10)
= PY |S(y | s). (11)

Furthermore, for a binary target Y ,

|PY |S(1 | 1)− PY |S(1 | 0)| =
= |1− PY |S(1 | 1)− (1− PY |S(0 | 0))|
= |PY |S(1 | 1)− PY |S(0 | 0))|

and the APB reduces to

µBias(Y, S) = |PY |S(1 | 1)− PY |S(1 | 0)|. (12)

Given a dataset D, the probabilities PY |S(y | s) can be
estimated empirically, using

πy|s = P̂Y |S(y | s) =
|{(xi, yi, si) ∈ D|yi = y, si = s)}|
|{(xi, yi, si) ∈ D|si = s)}|

(13)
and APB measured with

µBias(D) = |π1|1 − π1|0|. (14)

4.2. Label Balancing

Unbalanced datasets create difficulties to learning, since
the learning algorithm tends to focus on highest populated
groups and ignores groups with few examples [24–26].
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Hence, the dataset D should ideally be balanced, in the
sense that

PY (y) = PS(s) = 0.5,∀y, s ∈ {0, 1} (15)

While minimizing the APB brings together the probabil-
ities PY |S(1|1) and PY |S(1|0), this does not guarantee
that (15) holds. In general, the simple minimization of
(14) can originate highly unbalanced datasets. To avoid
this problem, we propose two additional label-balancing
metrics

µTB(Y ) = |PY (1)− 0.5|, µBB(S) = |PS(1)− 0.5|

implemented by the empirical estimates

µTB(D) = |ρ1 − 0.5|, µBB(D) = |γ1 − 0.5| (16)

where

ρy = P̂Y (y) =
|{(xi, yi, si) ∈ D|yi = y)}|
|{(xi, yi, si) ∈ D)}|

(17)

γs = P̂S(s) =
|{(xi, yi, si) ∈ D|si = s)}|
|{(xi, yi, si) ∈ D)}|

. (18)

4.3. Hard vs. Soft Pseudo-Labels

So far, we have used the empirical probability estimates
of (13), (17) and (18). These assume knowledge of the
ground truth labels yi and si of all examples. However,
in the BSS sampling step, only the pseudo-labels of (6) are
available. These can be incorrect, especially when fk(xi)
is close to 0.5. An alternative is to use soft labels, i.e. the
probability estimates fk(xi) output by the model. For this,
we use the fact that

the soft estimate

πsoft
y|s ≈

∑
i PY |X(yi|xi)PS|X(s|xi)∑

i PS|X(s|xi)

=

∑
i f(xi)

yi(1− f(xi))
1−yih(xi)

s(1− h(xi))
1−s∑

i h(xi)s(1− h(xi))1−s

from which the empirical estimate of the APB of (14) can
alternatively be written as

µsoft
Bias(D) = |π1|1 − π1|0| (19)

=

∣∣∣∣∑i f(xi)h(xi)∑
i h(xi)

−
∑

i f(xi)(1− h(xi))∑
i(1− h(xi))

∣∣∣∣
Similarly,

µsoft
TB (D) =

∣∣∣∣∣ 1

|D|
∑
i

f(xi)− 0.5

∣∣∣∣∣ (20)

µsoft
BB (D) =

∣∣∣∣∣ 1

|D|
∑
i

s(xi)− 0.5

∣∣∣∣∣ (21)

4.4. Scoring functions

Two scoring functions are used in ALOUD, for the two
BSS sampling operations of Algorithm 1. The first sam-
pling operation aims to identify good samples in the large
unlabelled dataset U to add to the labeled dataset D. This
involves two considerations. First, the samples should be
challenging to classify, since this leads to the classifier of
best generalization. The classification uncertainty of dataset
a D is computed with the Shannon entropy of the classifier
predictions

µUR(D; f) = −
1

|D|
∑
i

f(xi) log f(xi) (22)

The scoring functions then penalizes a combination of lack
of uncertainty, bias, and class unbalance. Specifically, we
define the scoring function

LCB(D) = (23)
µBias(D) + αµBB(D) + βµTB(D)− ζµUR(D)

Above, µBias, µBB , µTB , µUR are measures of dataset bias
and α, β, ζ are hyperparameters. The main contributions
of this work are these metrics, which account for various
biases in the dataset, building up to BSS1 and BSS2. Later,
we will discuss these two use of BSS in more detail.

This can be seen as a generalization of active learning
methods that use the uncertainty measure as an acquisition
function for examples to label [18], which BSS reverts to
when ζ is large. The multipliers α, β and ζ control the im-
portance of the different objectives.

The second use of BSS (BSS2) in ALOUD aims to elim-
inate samples that, after annotation by the human oracle, no
longer contribute to small dataset bias. This can happen be-
cause the sample selection of the candidate set Cb in BSS1

is based on model predictions that can be incorrect. How-
ever, this sampling is only a filtering operation, in the sense
that no new samples are added to the dataset. Since elimi-
nating training samples never has a benefit from a classifi-
cation point of view, samples are not penalized by lack of
uncertainty, only for introducing bias. Hence the scoring
function only penalizes bias and class imbalance according
to

LC(D) = µBias(D) + αµBB(D) + βµTB(D). (24)

Both scoring functions can be implemented with both soft
or hard measures µBias, µBB , and µTB .

5. Experiments
5.1. Experimental Setup

Datasets CelebA [27] is a large-scale face attribute
dataset with more than 200K celebrity images, each with 40
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Soft PL Label Balancing Uncertainty MuBias µBB Target µTB µUR

87.47
✓ 88.22
✓ ✓ 87.29
✓ ✓ ✓ 89.60
✓ ✓ 90.59
✓ ✓ ✓ 92.22

(a) Scoring function LCB pre-annotation.

Soft PL Label Balancing MuBias µBB Target µTB

None—Skip BSS2 81.09
83.10

✓ 84.28
✓ ✓ 86.31
✓ ✓ 92.22

(b) Scoring function LC post-annotation.

Table 1. Ablation Studies on ALOUD. We compare different scoring functions for bias sensitive sampling before and after data
annotation.

Figure 3. Performance in terms of % annotated

attribute annotations. It is well-used throughout debiasing
literature [16,32,35], particularly for its variety of poses and
richness of annotations. Of the 40 CelebA dataset attributes,
13 are universally considered to be subjectively unambigu-
ous target labels [39] which are listed in Table 3. For all
experiments, the Gender attribute will be taken as the pro-
tected attribute. The CelebA training set is comprised of
162770 images with 40 binary attributes, and experiments
(with the exception of Seed dataset ablation) begin with
5000 randomly chosen images from the training set.

Waterbirds is a dataset constructed from the Caltech-
UCSD Birds-200-2011 (CUB) [42] by sampling various
background images in the Place dataset and combining
them with images of birds from the CUB dataset. The labels
of Waterbirds are constructed by taking two attributes, Ob-
ject ∈ {Waterbird, Landbird} and Place ∈ {Water, Land}
which represent the type of bird and background as seen
from the CUB and Place datasets, represetively.

Evaluation Following from the problem formulation of
(2) and (3), the unbiased performance of f is measured by

the group average accuracy

Mu(D) =
1

|G|
∑
g∈G

Ag(f ;D), (25)

where

Ag(f ;D) =
1

|Sg|
∑

i|(yi,si)=g

1yi
(f(xi) ≥ .5) (26)

is the accuracy for examples of group g.

Classifier For model architecture, all experiments use
ResNet-18 pre-trained on ImageNet [9]. The final layer of
the ResNet-18 is a Linear(512, 2) with sigmoid activation,
so that the target and bias labels are trained on single model
as a multi-label prediction problem. For optimization, SGD
with learning rate .05, weight decay 10−4, and batch size
64. All models are trained with 40 epochs and the test accu-
racies reported correspond to the epoch with the maximum
validation accuracy.

BSS On CelebA dataset, we used hyperparameters {α =
0, β = 0.7, ζ = 0.7} for LCB in BSS1, and {α = 0, β =
0.7} for LC in BSS2. On waterbirds dataset, LCB in
BSS1 has the set of hyperparameters {α = 0.05, β =
0.7, ζ = 0.03}, and, LC in BSS2 is {α = 0.05, β = 0.7}
For our methods APB+TB or APB+TB+UR, Table 2, 3, 4,
BSS2 are LC above with those hyperparameters. APB+TB
refers to the LCB above with those hyperparameters but
ζ = 0. APB+TB+UR refers to the LCB above with those
hyperparameters.

5.2. Baselines

We compare our method with two kinds of debiasing
strategy, model debiasing and unbiased dataset. Due to the
similarity between our method and AL, we choose learning
loss for active learning as an additional compared method.
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Method CelebA Waterbirds
APB+TB+UR 9.83% 32.08%

APB+TB 8.60% 23.11%

Table 2. % of Training Set Used

Model Debiasing As the first part of baseline, debiasing
the model efficiently decreases the bias, while keeping the
datasize the same. DRO [34] is a model-based optimization
technique used to train a de-biased model. Specifically, it
minimizes the worst-case loss over an uncertainty distribu-
tion. BPA [35] is a unsupervised debiasing technique which
tackles the limitation when human annotation is impracti-
cal.

Dataset Debiasing The second part of our baseline is the
subgroup balanced dataset which is a subset of the entire
dataset in which each subgroup has the same amount of
samples. Such a dataset has zero bias, but limited training
samples that could potentially lead to poor generalization.
The even training (ET) baseline for CelebA is compared,
with the other baselines, in Table 3.

Active Learning AL method selects the most informative
data points and combines them with the labeled pool for re-
training. AL requires less human labeling, and can achieve
a relatively good accuracy, but it does not consider bias. We
pick learning loss [43] as an additional baseline, and the
standard entropy-based [18] is considered in next ablative
studies section.

5.3. Ablative Studies

Since the method as defined in Sections 3 and 4 can take
on a variety of forms for different choices in components,
a brief ablation is performed to analyze each component of
ALOUD and to determine the best performing method.

All of the ablation results use Blond Hair as the target
attribute and Gender as the protected attribute. Although
ablating on one attribute pair limits the interpretative power
of the results, certain findings from the ablations can easily
be extrapolated to attribute pairs sharing common proper-
ties. More exploratory data analysis of CelebA is provided
in the Supplementary Materials.

BSS1 As a new addition to the AL loop, ablations on
BSS1, located in Table 1a, are comprised solely of bias
metrics devised in Section 4. In results, LCB = µsoft

bias

+ 0.7µsoft
TB + 0.7µsoft

UR is the best performing debiasing
method for BSS1.

BSS2 BSS2 is introduced with the sole purpose of elim-
inating the samples, xi, with mismatched pseudolabels, yi,
and Ground Truth labels, hi(xi) adding which will rather
increase the current bias of the dataset. In contrast to the
ablation study of BSS1, there is a strong correlation with
BSS2 as seen by the large effect from each method. Out of
all the methods detailed in Table 1b, LC = µsoft

bias+0.7µsoft
TB

has the best performance. The reason may rely on the
makeup samples for the worst subgroup.

5.4. Results

CelebA The CelebA dataset has 182637 images, and 40
attributes. Data analysis begins with fixing the protected at-
tribute to be Gender and varying the target attribute over
the remaining 39 attributes. However, exploratory data
analysis [35] of the CelebA dataset found that 26 of the
39 target attributes held spurious correlations, meaning that
the gap between worst subgroup accuracy and average sub-
group accuracy were greater than 5%. The remaining 13
attributes are shown in Table 3.

There are 3 categories of baselines under consideration:
(1) Model Debaising methods, ie. DRO and BPA. (2) Ac-
tive Learning procedures, namely Learning Loss, and (3)
Dataset Debiasing methods, of which Even Subset Train-
ing, where the training set D ⊂ Xtrain is balanced with
respect to each subgroup, is considered. Additionally, Base
refers to using the full train split Xtrain as described in (1).
Note that all of these methods are judged by a model bias
metric,Mu, as laid out in (25).

As shown in Table 5, ALOUD achieves comparable or
greater performance to all baseline methods, despite on av-
erage only training on∼10.25% of the data, as seen in Table
2. This suggests the existence of ideal, unbiased subsets of
the CelebA dataset given a chosen pairs of attributes. Note
that this is with respect to the model bias metric Mu, as
given in (25), and that the effect on overall classifier perfor-
mance is non-obvious and explored in the supplementary
materials.

Out of the methods which operate on the complete train-
ing set of CelebA, Even Training (ET), is the most perfor-
mant. Note that, in this paradigm, in order to construct an
evenly subsampled training set, one must already have all
images labeled. This is contrary to blind methods which
treat the random seed dataset as the only labeled data for a
task. Active Learning methods, by this definition, are blind
as they seek to use an annotator to build up the dataset. This
distinction is denoted by the double vertical bar splitting
Table 3 and 4 into two halves where the left half columns
are aware of all the labels of Xtrain, whereas the right half
columns are not.

Mostly likely, the reason why µBias + µTB contributes
so strongly in comparison to µBias + µBB is due to the
subgroup proportions of the Blond/Gender attribute pair. In
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Target Base DRO BPA ET Learning Loss APB+TB APT+TB+UR
% % % % % % # % #

Blond Hair 80.42 91.39 90.18 91.82 80.44 91.73 21k 92.22 24k
Heavy Makeup 71.19 72.7 73.78 71.92 68.18 74.24 15k 72.94 17k

Pale Skin 71.5 90.55 90.06 91.11 73.64 74.46 6k 78.70 8k
Wearing Lipstick 73.9 78.26 78.28 83.31 68.09 82.46 16k 82.15 19k

Young 78.19 82.4 82.27 84.56 76.87 79.75 7k 79.59 8k
Double Chin 64.61 83.19 82.92 84.80 67.46 67.17 10k 83.76 20k

Chubby 67.42 81.9 83.88 83.82 68.47 67.18 10k 67.66 12k
Wearing Hat 93.53 96.84 96.8 97.86 84.12 92.95 7k 92.06 8k
Pointy Nose 62.1 70.71 68.98 71.64 64.26 65.62 7k 66.52 8k

Arched Eyebrows 69.72 78.3 74.77 80.42 70.18 80.56 20k 80.40 22k
No Beard 73.11 77.86 79.58 68.29 75.00 80.27 30k 80.19 32k
Wavy Hair 73.1 79.65 79.89 81.59 73.71 84.24 15k 78.06 9k

Wearing Earrings 72.17 83.5 84.57 86.06 72.80 84.99 20k 88.69 22k
Average 73.15 82.09 81.99 82.86 72.56 78.88 14k 80.24 16k

Table 3. Average Subgroup Accuracy (%), # of images (CelebA)

Target Bias Base DRO BPA ET APB+TB APB+TB+UR
% % % % % # % #

Object Place 84.63 88.99 87.05 83.42 87.32 1094 88.24 1558
Place Object 87.99 89.20 88.44 92.84 92.80 1123 93.52 1518

Average 84.63 89.10 87.75 88.13 90.06 1108 90.88 1538

Table 4. Average Subgroup Accuracy (%), # of images (Waterbirds)

the training of CelebA, the proportion of samples which
take on the Blond and Gender attributes are 58% and 4.3%,
respectively. Note that the relative importance between
µBias + µTB and µBias + µBB the depends, for each at-
tribute pair, on the proportion of images in each subgroup.

µBias + µTB tends to settle into small datasets with
low bias, which halt taking data that could decrease fu-
ture bias. There is a inherent trade-off between dataset size
and dataset bias, showing that introducing µUR dismantles
this trade-off by introducing another objective of improving
classifier generalization. For most attributes listed in Ta-
ble 3, our method shows higher average subgroup accuracy
compared with AL and model debiasing methods; besides,
our method has considerable large dataset compared with
dataset debiasing method, even traing. These findings show
that our method has a better trade-off between the bias and
the dataset size.

Waterbirds The main results for ALOUD on the Water-
birds dataset are shown in Table 4. Similarly to the CelebA,
ALOUD performs comparably or better than all baseline
methods while using ∼32% of data on average. These re-
sults are noteworthy since Waterbirds is much smaller than

CelebA, as its train set is only comprised of 4795 images.
This shows that the method holds even in low data environ-
ments.

5.5. Comparison with other methods

The framework ALOUD has been built after taking in-
spiration from several active learning setups by researchers
so far. It is similar to ALOFT [1] in a manner that it uses
the same concept of alternate update of the training dataset
and the model but it differs in the use of BSS1 and BSS2

in place of minimization of cv i.e. coefficient of variation
between co-occurring features for every single data in case
of ALOFT.

Another method ALOUD has some similarity with
is LPDSSL (Label propagation for deep semi-supervised
learning) [17]. Firstly, the former minimizes the cross-
entropy loss function with initial seed dataset to predict
pseudo-labels of the subset of unlabelled pool after acqui-
sition whereas the latter does the same by utilizing near-
est neighbour graph and conjugate gradient (CG) method in
label propagation. Secondly, to mitigate bias, our method
uses scoring functions, LCB in BSS1 and LB in BSS2

whereas LPDSSL minimizes weighted loss which is a sum
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of weighted cross-entropy loss and pseudo-label loss.

6. Conclusion
Real datasets used for training are usually biased. Unlike

most literary works on working on making robust models
to mitigate bias, we proposed to build an efficient unbiased
training dataset with a target attribute and a protected at-
tribute in an active learning setup. Experiments have been
performed with different combinations of target and pro-
tected attributes to test the robustness of our algorithm. It
was observed that training dataset G became iteratively bet-
ter as model fk selected more images of underrepresented
subgroup in each iteration thereby reducing bias starting
from a random biased seed dataset D0. Amongst all the
variations of our algorithm we have tested, APB+TB+UR
provided best accuracy results on an unbiased test dataset
over datasets of different domains.

As a future extension of our work, we would like to build
the iterative training dataset from scratch rather than from
a random biased seed dataset. Images would get added
to initially increase, then decrease and finally stabilize the
dataset with the minimum bias possible while simultane-
ously checking performance on an unbiased test dataset.
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(a) (b) (c)

Figure 4. (a)Hyper-parameter Tuning on β (µBias + βµTB) (b)Hyper-parameter Tuning on α (µBias + αµBB + 0.7µTB)
(c)Hyper-parameter Tuning on ζ (µBias + 0.7µTB + ζµUR)
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